About Drop Forging and Upset Forging
May. 13, 2024
About Drop Forging and Upset Forging
Forging Means Uncompromised Strength
Drop Forging
Closed die drop forging is a steel shaping process whereby a heated steel billet is placed on a lower die mould block, while an overhead, die-equipped ram hammer drives or “drops” down, forcing the metal to fill the contours of the two die blocks. Forging on a drop hammer is carried out in a succession of die impressions using repeated blows. The quality of the forging, and the economy and productivity of the hammer process depend upon the tooling and the skill of the operator.
Want more information on block forging manufacturing? Feel free to contact us.
Upset Forging
Upset forging is a manufacturing process that plastically deforms metal under great pressure into high strength components of varying sizes. This forging process is ideal for longer shapes where only one end of a part needs to be forged. Upset forgings are made by gathering material to a designated area of a carbon, alloy, or stainless steel bar. The mechanical press used to manufacture these components operates on a horizontal plane. The dies are split to allow material to protrude beyond the mechanical press, and some of the forming force is provided by a third die attached to the header.
Why Forge?
The forging process can create parts that are stronger than those manufactured by any other metalworking process. This is why forgings are almost always used where reliability and human safety are critical.
FORGINGS compared to Castings
- Forgings are stronger. Casting cannot obtain the strengthening effects of hot and cold working. Forging surpasses casting in predictable strength properties - producing superior strength that is assured, part to part.
- Forging refines defects from cast ingots or continuous cast bar. A casting has neither grain flow nor directional strength and the process cannot prevent formation of certain metallurgical defects. Preworking forge stock produces a grain flow oriented in directions requiring maximum strength. Dendritic structures, alloy segregation's and like imperfections are refined in forging.
- Forgings are more reliable, less costly. Casting defects occur in a variety of forms. Because hot working refines grain pattern and imparts high strength, ductility and resistance properties, forged products are more reliable. And they are manufactured without the added costs for tighter process controls and inspection that are required for casting.
- Forgings offer better response to heat treatment. Castings require close control of melting and cooling processes because alloy segregation may occur. This results in non-uniform heat treatment response that can affect straightness of finished parts. Forgings respond more predictably to heat treatment and offer better dimensional stability.
- Forgings' flexible, cost-effective production adapts to demand. Some castings, such as special performance castings, require expensive materials and process controls, and longer lead times. Open-die and ring rolling are examples of forging processes that adapt to various production run lengths and enable shortened lead times.
FORGINGS compared to Weldments/Fabrications
- Forgings offer production economies, material savings. Welded fabrications are more costly in high volume production runs. In fact, fabricated parts are a traditional source of forging conversions as production volume increases. Initial tooling costs for forging can be absorbed by production volume and material savings and forging's intrinsic production economics lower labor costs, scrap and rework reductions and reduced inspection costs.
- Forgings are stronger. Welded structures are not usually free of porosity. Any strength benefit gained from welding or fastening standard rolled products can be lost by poor welding or joining practice. The grain orientation achieved in forging makes stronger parts.
- Forgings offer cost-effective designs/inspection. A multiple-component welded assembly cannot match the cost-savings gained form a properly designed, one-piece forging. Such part consolidations can result in considerable cost savings. In addition, weldments require costly inspection procedures, especially for highly stressed components. Forgings do not.
- Forgings offer more consistent, better metallurgical properties. Selective heating and non-uniform cooling that occur in welding can yield such undesirable metallurgical properties as inconsistent grain structure. In use, a welded seam may act as a metallurgical notch that can lead to part failure. Forgings have no internal voids that cause unexpected failure under stress or impact.
- Forgings offer simplified production. Welding and mechanical fastening require careful selection of joining materials, fastening types and sizes, and close monitoring of tightening practice both of which increase production costs. Forging simplifies production and ensures better quality and consistency part after part.
FORGINGS compared to Machined Bar/Plate
- Forgings offer broader size range of desired material grades. Sizes and shapes of products made from steel bar and plate are limited to the dimensions in which these materials are supplied. Often, forging may be the only metalworking process available with certain grades in desired sizes. Forgings can be economically produced in a wide range of sizes from parts whose largest dimension is less than 1 in. to parts weighing more than 450,000 lbs.
- Forgings have grain oriented to shape for greater strength. Machined bar and plate may be more susceptible to fatigue and stress corrosion because machining cuts material grain pattern. In most cases, forging yields a grain structure oriented to the part shape, resulting in optimum strength, ductility and resistance to impact and fatigue.
- Forgings make better, more economical use of materials. Flame cutting plate is a wasteful process one of several fabricating steps that consumes more material than needed to make such parts as rings or hubs. Even more is lost in subsequent machining.
- Forgings yield lower scrap; greater, more cost-effective production. Forgings, especially near-net shapes, make better use of material and generate little scrap. In high-volume production runs, forgings have the decisive cost advantage.
- Forgings require fewer secondary operations. As supplied, some grades of bar and plate require additional operations such as turning, grinding and polishing to remove surface irregularities and achieve desired finish, dimensional accuracy, machine-ability and strength. Often, forgings can be put into service without expensive secondary operations.
FORGINGS compared to Powder Metal Parts (P/M)
- Forgings are stronger. Low standard mechanical properties (e.g. tensile strength) are typical of P/M parts. The grain flow of a forging ensures strength at critical stress points.
- Forgings offer higher integrity. Costly part-density modification or infiltration is required to prevent P/M defects. Both processes add costs. The grain refinement of forged parts assures metal soundness and absence of defects.
- Forgings require fewer secondary operations. Special P/M shapes, threads and holes and precision tolerances may require extensive machining. Secondary forging operations can often be reduced to finish machining, hole drilling and other simple steps. The inherent soundness of forgings leads to consistent, excellent machined surface finishes.
- Forgings offer greater design flexibility. P/M shapes are limited to those that can be ejected in the pressing direction. Forging allows part designs that are not restricted to shapes in this direction.
- Forgings use less costly materials. The starting materials for high-quality P/M parts are usually water atomized, pre-alloyed and annealed powders that cost significantly more per pound than bar steels.
What is the Power Forge Process?
Forging is a manufacturing process that results in the shaping of metal by using calculated force. Forging is executed with a power hammer or a die during the shaping process to produce the intended design of the forged metal object. Forging also has multiple classifications, identified according to the temperature at which the forging process is being performed. This includes cold forging or hot forging, each offering its own distinct advantages. Forged parts could range in size from less than a kilogram to hundreds of metric tons and be customized to fit any shape or size desired.
Additional resources:Unlock the Secrets of Copper Forging - Expert Tips and Techniques
What are the limitations of ring rolling?
Revolutionizing Blockchain Technology with Efficient Sourcing Block Forging: How?
Ultimate Guide to OEM Rolled Ring Forging Solutions
The Art of Forging: Mastering Shaft Fabrication
Essential Guide to OEM Gear Blank Selection
How to source warm forging services effectively.
For more information, please visit seamless rolled ring forging fabrication.
What Is The Difference Between Cold and Hot Forging?
Cold forging is a forging process that is performed at room temperature. To deliver a finished product, this process includes rolling, drawing, pressing, spinning, extruding and heading. The benefits of cold forging include the fact that cold forged parts require very little finishing work which helps save on production costs. Hot forging, meanwhile, is performed at extremely high temperatures–up to 1,150 degrees Celsius. The benefits of hot forging include the metal being more flexible and easier to work with than cold forging, allowing more customized parts to be manufactured due to this malleability.
What Is Drop Forging?
Drop forging refers to a method of closed die drop forging where a heated steel billet is placed on a lower die mold block. While overhead, the die-equipped ram hammer drives down, or drops down, forcing the metal to fill the contours of the two die blocks. Drop forging gets its name from that action of the ram hammer dropping down on the metal object that is being forged. The reason manufacturers use the drop forging process is to produce products that need to be especially strong and durable.
Evolution of Forging
Forging as a practice has lasted throughout the test of time. It first began with people creating hand tools or weapons out of pieces of metal over a campfire. Forging continued to evolve from there to become the machine driven industry that it is today. At Canton Drop Forge, our forgings are used in critical applications where there is zero tolerance for failure. As a modern forging company, we specialize in manufacturing precise and durable forgings for different markets including Aerospace, Transportation, Off-Highway and others.
Most Popular Forging Applications
- Aerospace Forging
- Mechanical Power Forging
- Transportation Forging
- Oilfield Forging
- Off Highway Forging
- Power Generation Forging
- Pumps & Compressors Forging
- Defense Forging
Canton Drop Forge’s Diverse Forging Experience
The breadth of our capabilities and more than 100 years of experience continue to prepare us for future opportunities in markets around the world. Contact our forging experts to see how Canton Drop Forge can provide precise custom forging solutions for your industry’s unique needs.
The company is the world’s best seamless rolled ring forging factories supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.
How are steel forged rings manufactured?
Revolutionizing Aerospace Industry: The Power of Seamless Rolled Rings - How can this technology change the game?
10 Questions You Should Know about Forging Gear Blanks Solution
Copper Forging
4 Advice to Choose a ODM forging gear blanks
Key Questions to Ask When Ordering Custom Shaft Forging
Revolutionizing Industrial Manufacturing: ODM Seamless Rings - How?
103
0
0
Related Articles
-
48
0
0
-
47
0
0
-
39
0
0
Comments
All Comments (0)